

HeCSON: Heuristic for Configuration Selection in Optical Network Planning

Sai Kireet Patri^{1,2}, Achim Autenrieth¹, Danish Rafique¹, Jörg-Peter Elbers¹ and Carmen Mas Machuca² 1) ADVA, Fraunhoferstr. 9a, 82152 Martinsried, Germany 2) Chair of Communication Networks, Technical University of Munich, Arcisstr. 21, 80331 Munich, Germany Email: SPatri@adva.com

Key Message

- Proposed transceiver configuration selection heuristic shows:
 - A 40% increase in network throughput compared to Accurate Closed Form Enhanced Gaussian Noise Model (ACF-EGN)
 - An 87% decrease in execution time compared to Full-Form EGN (FF-EGN)
- Network agnostic results

Reproducible using open source reference network information [1]

Motivation

- TeraFlexTM [2] supports software tunable transponders
- Offline greenfield network planners aim to increase overall network capacity
- FF-EGN [3] based OSNR is accurate but complex calculations
- ACF-EGN [4] based OSNR is quick but approximate
- Need for both speed and accuracy

no

HeCSON Workflow

- Dijkstra's SP routing of all demands
- **Pre-Selection** of all demands based on linear OSNR
- For each demand:
 - **Fast Configuration Selection** based on ACF-EGN
 - **Accurate Configuration Validation** based on FF-EGN

Selected Results & Conclusions

- For Germany 50
 - Throughput -199.85 Tbps (ACF-EGN 124.75 Tbps)
 - **Execution Time 35 mins** (FF-EGN **195 mins**)
 - Most light-paths can be upgraded to **300-400 Gbps**
 - Spectral Efficiency and blocked demands similar to FF-EGN
- Comparable results for EU and Norway
- **HeCSON offers:**
 - An estimate for network planners on configuration selection

Possibilities for disaggregated optical network planning

31(16), 2019

yes

low OSNR?

SPONSORED BY THE

Federal Ministry of Education

and Research

Acknowledgements

This work is partially funded by Germany's Federal Ministry of Education and Research under project OptiCON (Grant IDs #16KIS0989K and #16KIS0991)

