

Coherent Technologies for Short Reach Applications

Jörg-Peter Elbers, ADVA APC - SPPCom 2020 – Symposium on Short Reach Coherent – SpW2I.3

Coherent interface trade-offs

Spectral efficiency

Performance

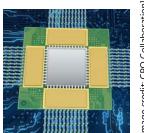
Flexibility

Energy efficiency

Cost efficiency

Compactness

Design choices depend on the application



 $\ensuremath{\mathbb{C}}$ 2020 ADVA. All rights reserved.

Coherent applications

image credit: CPO Collaboration]

Subsea/LH/Core

Integrated interfaces 400G-1.2T channels Ultra-flexible modulation

What to watch 140GBd per lambda

Metro/DCI/Access

Pluggable modules 400G-ZR (QSFP-DD, 15W) 100...400G-ZR+ (CFP2, 25W)

What to watch 100G-ZR (QSFP28, 5W)

Intra-DC/Intra-Office

Transceiver chiplets A future application? Direct-detect modules today

What to watch Co-packaged optics (CPO)

The interface alphabet soup

IEEE	500m PSM4	2km SMF	10km SMF	20km SMF	40km SMF	80km SMF
10GBASE-			BIDI Access	BIDI Access	BIDI Access	
25GBASE-			LR/ EPON/ BIDI Access	EPON/ BIDI Access	ER/ BIDI Access	
40GBASE-	PSM4	FR	LR4			
50GBASE-			EPON/ BIDI Access	EPON/ BIDI Access	BIDI Access	
		FR	LxR		ER	
100GBASE-	PSM4	10X10-2km CWDM4/	10X10-10km LR4/ 4WDM-10	4WDM-20	ER4/ 4WDM-40	
		ED1	I D1			
	DR	FR1 100G-FR	LR1 100G-LR			ZR
200GBASE-	DR DR4				ER4	ZR
200GBASE- 400GBASE-		100G-FR	100G-LR		ER4 ER8	ZR

Current coherent module focus: ZR(+) interfaces (DWDM)

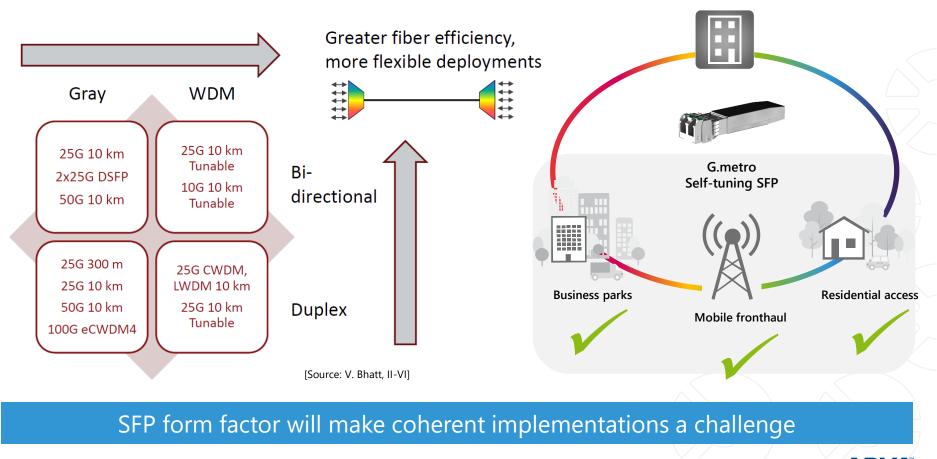
© 2020 ADVA. All rights reserved.

ZR(+) interface cheat sheet

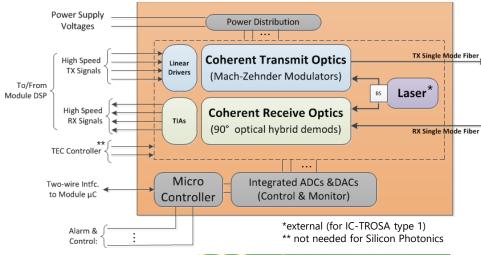
Standard	Data rate	Interface	Modulation format	FEC	DWDM	Nom. Reach
ITU-T G.698.2/G.709.2 OpenROADM CableLabs	100G	OTU4-LR	DP-DQPSK	SC-FEC	100 & 50GHz 96ch. (50GHz) 100GHz	120km, 500km 500km, 1000km 120km
IEEE 802.3ct	100G	100GBASE-ZR	DP-DQPSK	SC-FEC	48ch. (100GHz)	80km
ITU-T G.698.2/G.709.3 OpenROADM CableLabs	200/400G 200/300/400G 200G	FlexO	DP-16QAM DP-QPSK/-8QAM/-16QAM DP-QPSK (DP-16QAM)	CFEC, OFEC OFEC OFEC	FlexGrid FlexGrid 100GHz (50GHz)	120km, 500km 500k, 1000km 120km
IEEE 802.3cw OIF	400G 400G	400GBASE-ZR 400ZR	DP-16QAM DP-16QAM	CFEC CFEC	64ch. (75GHz) 48/64 ch. (100/75GHz)	80km 120km

SC-FEC: Staircase-FEC, CFEC: Concatenated staircase & soft-decision Hamming FEC, OFEC: Open-FEC (spatially correlated product code based soft-decision FEC)

Open **ROADM**



ZR+ often supports additional features & proprietary FECs



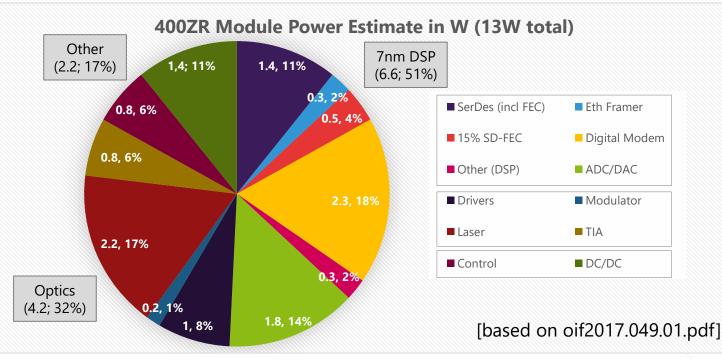
What about lower speed pluggables?

© 2020 ADVA. All rights reserved.

What is important moving forward? Electro-photonic integration

TIA: Transimpedance amplifier TEC: Thermoelectric cooler

IC-TROSA: Integrated coherent transmitter-receiver optical subassembly


IC-TROSA type 1 SMT package (reflow-soldering capable)

What is important moving forward?

Low power consumption

Need to optimize each block for shorter reach applications

Conclusions

Coherent technologies are conquering new territory

Cost, power and footprint are most important parameters in short reach applications

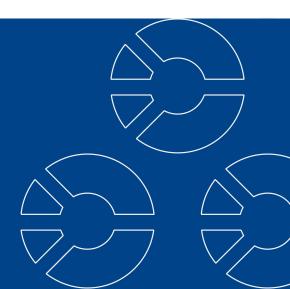
Spectral efficiency, ultimate performance and flexibility are less important

Near-term opportunities exist in the 100G-400G ZR(+) space

The need for higher capacities will open access and intra-DC opportunities

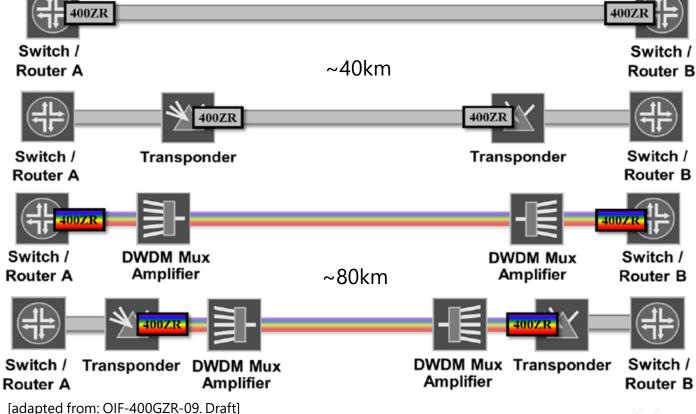
Thank you

jelbers@adva.com



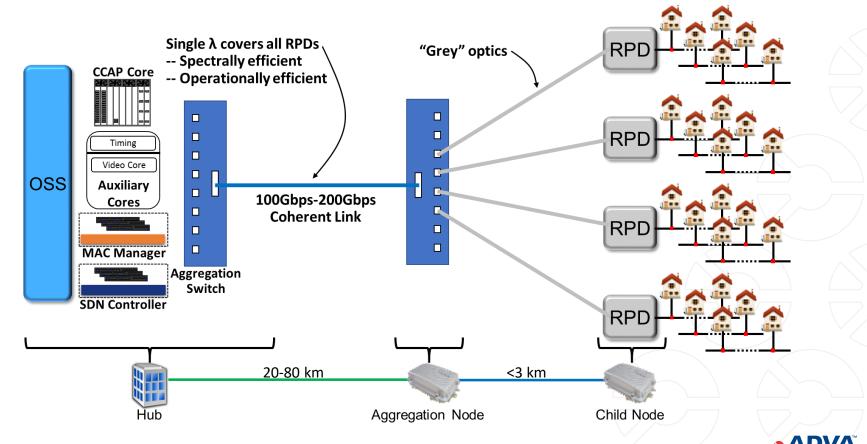
IMPORTANT NOTICE

ADVA is the exclusive owner or licensee of the content, material, and information in this presentation. Any reproduction, publication or reprint, in whole or in part, is strictly prohibited.


The information in this presentation may not be accurate, complete or up to date, and is provided without warranties or representations of any kind, either express or implied. ADVA shall not be responsible for and disclaims any liability for any loss or damages, including without limitation, direct, indirect, incidental, consequential and special damages, alleged to have been caused by or in connection with using and/or relying on the information contained in this presentation.

Copyright © for the entire content of this presentation: ADVA

400G-ZR Data center interconnect



© 2020 ADVA. All rights reserved.

Coherent Optics for Cable Networks

