My ADTRAN

ADTRAN

BLOG


Stay up to date with all of ADTRAN's news, products and services with posts from the leaders in our industry.

READ OUR TECHNOLOGY BLOG

ADTRAN

BLOG


Stay up to date with all of ADTRAN's news, products and services with posts from the leaders in our industry.

The demand for faster Internet connectivity is expanding at a staggering rate. Many industry analysts predict that Internet traffic will increase between 20 and 30 percent each year, and Cisco Visual Networking Index predicts that video traffic will increate to 80% of all IP traffic. Trends contributing to increased bandwidth demand include an increase in the number of connected devices per person and record growth in subscriptions to over-the-top video services, such as Netflix. In addition, the NCTA reports that the cable industry now has more broadband subscribers than video subscribers. With an ever-increasing bandwidth demand, 50 gigabit cities in the US and counting, and tremendous growth in the consumption of over the top video, many operators are looking for ways to reduce OpEx and build an all-fiber, flexible network that will satisfy the growing demand for many years to come.

Kurt Raaflaub

Make no mistake, if you offer a 1 Gigabit-per-second symmetric broadband service you had better be able to deliver the goods. Even when you consider that the average peak time usage per broadband* user today is only around 2Mbps levels, that Gigabit Broadband ‘Killer app” still exists – the broadband speed test! – which needs to be supported. Most new Fiber-to-the-Home (FTTH) networks can handle this widely used application, having the available access capacity to both support the full Gigabit per second burst satisfying the network speed test while still supporting peak time applications.

Many industry analysts are surprised to hear that most Gigabit Broadband players are using the fiber sharing GPON technology, and not point to point (P2P) Ethernet, FTTH technology.

Kurt Raaflaub

With the current surge of Gigabit Fiber-to-the-Home (FTTH) deployments happening in the United States, and the resulting 1 Gigabit-per-second broadband services being offered, a lot of service providers are watching intently as they work through their own Gigabit plans. They are waiting for more data points regarding the tangible benefits being bestowed upon these broadband trail blazers. As they take stock of their current network capabilities, they are also wishing they could limit the inevitable network impacts and deployment costs tied to rolling out a wide-area Gigabit service to their subscriber base. FTTH Broadband, and more so Gigabit Broadband, comes with a cost. That said, not offering Gigabit Broadband comes with a cost as well.

Kurt Raaflaub

This is the third and final installment to my blog series regarding an enhanced DSL technology known as Frequency Division Vectoring (FDV). This technology and other super-vectoring technologies are being looked at by operators to once again allow them to leverage billions of dollars (or euros) of investment in their Fiber-to-the-Cabinet, -Node and -Curb deployments.  

These super-vectoring technologies can double the performance of today’s vectored VDSL2 supplying up to 300Mbps of broadband service. This allows operators to stave off both the Cable/MSO competition as well as the high cost associated with full blown Fiber-to-the-Home (FTTH) deployments.